349 research outputs found

    Figures of the article Limits of Semigroups Depending on Parameters by J. K. Hale and G. Raugel , vol 1, 1 , 1-45, 1993

    Get PDF
    Figures of the article Limits of Semigroups Depending on Parameters by J. K. Hale and G. Raugel , vol 1, 1 , 1-45, 199

    Dynamics of a scalar parabolic equation

    Get PDF

    A general class of evolutionary equations

    Get PDF
    За допомогою спостережуваних величин та змінної стану динамічного процесу визначено загальне еволюційне рівняння, що узагальнює класичні звичайні диференціальні рівняння, диференціальні рівняння з частинними похідними та спадкові системи із запізненням і системи нейтрального типу. Наведено специфічні ілюстрації з використанням ліній трансмісії із зчепленням "найближчих сусідів" на межі та теорії теплопереносу у твердих тілах. Розглянуто також певну спектральну теорію для лінеаризації рівнянь.Using observable quantities and state variable of a dynamical process, a general evolutionary equation is defined which unifies classical ordinary differential equations, partial differential equations, and hereditary systems of retarded and neutral type. Specific illustrations are given using transmission lines nearest neighbor coupled at the boundary and the theory of heat transfer in solids. Some spectral theory for linearization of the equations also is discussed

    Poisson-Nernst-Planck Systems for Narrow Tubular-like Membrane Channels

    Full text link
    We study global dynamics of the Poisson-Nernst-Planck (PNP) system for flows of two types of ions through a narrow tubular-like membrane channel. As the radius of the cross-section of the three-dimensional tubular-like membrane channel approaches zero, a one-dimensional limiting PNP system is derived. This one-dimensional limiting system differs from previous studied one-dimensional PNP systems in that it encodes the defining geometry of the three-dimensional membrane channel. To justify this limiting process, we show that the global attractors of the three-dimensional PNP systems are upper semi-continuous to that of the limiting PNP system. We then examine the dynamics of the one-dimensional limiting PNP system. For large Debye number, the steady-state of the one-dimensional limiting PNP system is completed analyzed using the geometric singular perturbation theory. For a special case, an entropy-type Lyapunov functional is constructed to show the global, asymptotic stability of the steady-state

    Moving lattice kinks and pulses: an inverse method

    Full text link
    We develop a general mapping from given kink or pulse shaped travelling-wave solutions including their velocity to the equations of motion on one-dimensional lattices which support these solutions. We apply this mapping - by definition an inverse method - to acoustic solitons in chains with nonlinear intersite interactions, to nonlinear Klein-Gordon chains, to reaction-diffusion equations and to discrete nonlinear Schr\"odinger systems. Potential functions can be found in at least a unique way provided the pulse shape is reflection symmetric and pulse and kink shapes are at least C2C^2 functions. For kinks we discuss the relation of our results to the problem of a Peierls-Nabarro potential and continuous symmetries. We then generalize our method to higher dimensional lattices for reaction-diffusion systems. We find that increasing also the number of components easily allows for moving solutions.Comment: 15 pages, 5 figure

    On Pole Assignment and Stabilizability of Neutral Type Systems

    Get PDF
    In this note we present a systematic approach to the stabilizability problem of linear infinite-dimensional dynamical systems whose infinitesimal generator has an infinite number of instable eigenvalues. We are interested in strong non-exponential stabilizability by a linear feed-back control. The study is based on our recent results on the Riesz basis property and a careful selection of the control laws which preserve this property. The investigation may be applied to wave equations and neutral type delay equations

    Synchronization of coupled limit cycles

    Full text link
    A unified approach for analyzing synchronization in coupled systems of autonomous differential equations is presented in this work. Through a careful analysis of the variational equation of the coupled system we establish a sufficient condition for synchronization in terms of the geometric properties of the local limit cycles and the coupling operator. This result applies to a large class of differential equation models in physics and biology. The stability analysis is complemented with a discussion of numerical simulations of a compartmental model of a neuron.Comment: Journal of Nonlinear Science, accepte

    Open strings in relativistic ion traps

    Get PDF
    Electromagnetic plane waves provide examples of time-dependent open string backgrounds free of α\alpha' corrections. The solvable case of open strings in a quadrupolar wave front, analogous to pp-waves for closed strings, is discussed. In light-cone gauge, it leads to non-conformal boundary conditions similar to those induced by tachyon condensates. A maximum electric gradient is found, at which macroscopic strings with vanishing tension are pair-produced -- a non-relativistic analogue of the Born-Infeld critical electric field. Kinetic instabilities of quadrupolar electric fields are cured by standard atomic physics techniques, and do not interfere with the former dynamic instability. A new example of non-conformal open-closed duality is found. Propagation of open strings in time-dependent wave fronts is discussed.Comment: 43 pages, 11 figures, Latex2e, JHEP3.cls style; v2: one-loop amplitude corrected, open-closed duality proved, refs added, miscellaneous improvements, see historical note in fil

    Dynamics of Simple Balancing Models with State Dependent Switching Control

    Full text link
    Time-delayed control in a balancing problem may be a nonsmooth function for a variety of reasons. In this paper we study a simple model of the control of an inverted pendulum by either a connected movable cart or an applied torque for which the control is turned off when the pendulum is located within certain regions of phase space. Without applying a small angle approximation for deviations about the vertical position, we see structurally stable periodic orbits which may be attracting or repelling. Due to the nonsmooth nature of the control, these periodic orbits are born in various discontinuity-induced bifurcations. Also we show that a coincidence of switching events can produce complicated periodic and aperiodic solutions.Comment: 36 pages, 12 figure
    corecore